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Abstract. Many real-world complex systems are best modeled by multiplex networks of interacting network
layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of
complex networks. Pioneering studies have proven that the multiplexity has broad impact on the system’s
structure and function. In this Colloquium paper, we present an organized review of the growing body of
current literature on multiplex networks by categorizing existing studies broadly according to the type of
layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open
challenges and future perspectives will be proposed.

1 Introduction

Many real-world complex systems ranging from living or-
ganisms and human society to transportation system and
critical infrastructure operate through multiple layers of
distinct interactions among constituents as well as the
interplay between these interaction layers to fulfill their
emergent function [1–3]. Multiplex network [4–11] is a
class of networks introduced to better model such systems,
in which the same set of nodes are connected via more than
one type of links1 (Fig. 1). Each type of links in multi-
plex networks constitutes the network layer. Examples for
multiplex networks abound: individuals in a society are
networking through numerous social relationships such as
friendship, kinship, co-workership and via a multitude of
communication channels such as online and offline con-
tacts [12]. Critical infrastructure provides essential sup-
port for the functioning of modern society through con-
certed operations of multiple interlinked and interrelated
networks such as energy production and supply, telecom-
munication, and transportation networks [13]. The study
of multiplex networks has emerged as one of the major
contemporary topics of network theory [5–11], along with
the parallel development of closely related topics such as
interacting networks [14], interdependent networks [15],
and interconnected networks [16].

a Present address: Department of Physics and Levich Insti-
tute, City College of New York, New York, NY 10031, USA

b e-mail: kgoh@korea.ac.kr
1 In the literature, the term “multiplex” tends to be used in

a more loose sense, referring also to more general multilayered
and interconnected systems. Throughout this paper, however,
we will try to adhere to the strict definition of the term.

Fig. 1. An illustrative example of the multiplex network
of nine nodes with two layers, the red (solid) and the blue
(dashed) layer. A node and its replica are shown linked by the
dotted line, to denote the identity relation. In addition to the
multiplex network topology like this, the type of layer coupling
needs also to be implemented correctly, for a reliable treatment
of given multiplex problem.

Introduction of manifold layers in multiplex networks
necessitates new conceptual as well as computational de-
velopments beyond the standard single-network theoretic
framework that has been well-established during the last
fifteen or so years [17]. The multiplex network is not just a
simple stack of many network layers. What makes a truly
multiplex system is the functional coupling between layers,
which gives rise to in general non-additive and nonlinear
effect for the emergent function of the system. Hence a
proper consideration of the contexts of multiplexity that
the multiple layers make is essential for correct description
and successful understanding of multiplex problems.
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There are two important facets of multiplexity, which
we might refer to as (i) the pattern of multiplexity and
(ii) the type of multiplexity. The former concerns how
the layers are coupled structurally. The same set of net-
work layers can be coupled in many ways to form different
multiplex structures (and vice versa). In real-world mul-
tiplex systems, the coupling structure between layers are
far from random but correlated, a property termed the
correlated multiplexity [5], which has been assessed to be
significant empirically [18] in terms of the interlayer de-
gree correlation and the link overlap. The type of multi-
plexity concerns how the layers are coupled functionally,
that is, how the function of one layer affects that of an-
other (and vice versa). For instance, the multiple layers
in a multiplex system may be coupled either in comple-
mentary/connective manner as in the transportation sys-
tem [5,7,14] or in cooperative/dependent way as in the
critical infrastructure [10,15]. Depending on the type of
multiplexity, same multiplex structures can behave quite
differently. A legitimate understanding of multiplex net-
work problems can thus be achieved only when both struc-
tural and functional aspects of multiplexity are correctly
taken into account.

In this Colloquium paper, we attempt an organic
overview of the fast-growing body of current literature on
statistical physics of multiplex networks. We will pay par-
ticular attention to put the diverse approaches in related
problems into a coherent setting characterized and catego-
rized broadly by the type of multiplexity. In so doing, we
hope this paper not to reiterate but to complement several
existing review articles on closely-related topics. Readers
are referred to references [19,20] for more focused sum-
mary on interdependent networks, to references [2,3] for
broader expositions on multilayer networks, and to refer-
ences [21,22] for comprehensive reviews on temporal net-
works. A compendium volume [1] collecting contributions
from pioneering groups is also available, providing an over-
arching overview of the early development of the field at
large.

The rest of this Colloquium paper is organized as fol-
lows. In Section 2, we discuss how to characterize and
model the multiplex systems. There will also be intro-
duced the basic definitions and terminology. In Section 3,
we review multiplex problems with cooperatively-coupled
layers, such as mutual percolation and multiplex cascades,
for which major new concepts and analytic methods spe-
cific to multiplex systems are introduced. In Section 4,
problems with complementary layers, such as transport
and epidemic spreading on interconnected layers, are sur-
veyed. In Section 5, other types of layer coupling such as
competitive coupling and directional coupling are briefly
discussed. The paper will close with conclusion and out-
look in Section 6.

2 Characterization and modeling
of the multiplex structure

A first step towards understanding of new network con-
cept is to formulate appropriate means to characterize the

structural properties. To motivate, we first look for em-
pirical data for multiplex networks, ranging from social
and man-made systems to biological systems. Basic rep-
resentations of multiplex network ensemble and various
structural measures are introduced. Finally, random graph
models of multiplex networks will be introduced as theo-
retical tools for systematic and analytic understanding of
the multiplex system.

2.1 Empirical studies and multiplex network data

Empirical studies on real-world network data have been
a major fuel of network science, motivating newer and
more sophisticated network concepts and developments of
necessary analytic tools.

Society is a prime example of the multiplex net-
work system. Since early social network studies, data on
the social multiplex (sometimes also termed as multi-
stranded) relationships had been collected through sur-
veys and interviews, and its social implications had been
discussed [23–26]2. With the recent development of dig-
ital technology, human individual activities are being
recorded in unprecedentedly high spatiotemporal reso-
lution and in large scale. Studies exploiting this op-
portunity came from the analyses of the massive mul-
tiplayer online games [18,27,28], first quantifying the
correlated multiplexity in large scale. Another kind of
large-scale yet more accessible multiplex social network
data is the communication-collaboration network between
scientists [29–31].

Many man-made systems in modern society are also
multiplex network systems. An example is the transporta-
tion system. In the scale of urban and nation-wide tran-
sit system, several datasets on different transportation
modes [32,33] have been constructed. At a larger scale,
a multiplex European airway network with thirty-seven
layers corresponding to routes operated by different com-
mercial airline companies [34] and the worldwide airport-
seaport coupled network [35] have been analyzed. Another
example is the so-called critical infrastructure systems
ranging from the power grid and water supply networks
to wired and wireless information communication infras-
tructures [36,37], which motivated the concept of interde-
pendency between layers in a multiplex system, leading to
interesting new physics (see Sect. 3 for more details). The
global economic system is also a multiplex system consist-
ing of various financial and political layers. Best charac-
terized example is the international trade network among
countries as a multiplex network with layers representing
different types of goods [38,39].

Biology is governed by multiplex networks across many
levels of hierarchy. At the cellular level, the basic cellular
function is fulfilled by the coordinated actions of many
layers of biomolecular interactions. Reconstruction and in-
terrogation of major biomolecular network layers in model

2 In the social network literature the term multiplexity has
often been used to refer to the degree of overlap in relations
(links) across different layers.
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organisms [40–42] and human [43,44] have made steady
progress in the last decade towards the whole-cell mod-
eling [45]. At the physiological level, an example is pro-
vided by the neuronal network of Caenorhabditis elegans
consisting of two layers of connections, the synaptic con-
nections and the gap junctions [46], and the layer-level
structural properties have been analyzed in reference [47].
At the ecological level, species interact with one another
through mutualistic, host-parasite or predator-prey rela-
tionship, which should be treated in terms of the multiplex
network [48].

2.2 Mathematical formulations and measures

On first thought, it might seem straightforward to general-
ize various network concepts and measures well-defined for
single-layer networks [17] into multiplex networks by intro-
ducing additional index for the network layer. This turned
out not always to be the case [49]. Often such simple-
minded generalization could miss the essential feature of
the multiplex system, that is the context of multiplexity.
In this section, we shall try to summarize the current sta-
tus of theoretical development in this direction, clarifying
what has been done and what has to be done. For the
sake of simplicity of presentation, we shall consider only
the multiplex networks consisting of layers of simple undi-
rected unweighted graphs.

Throughout this paper, we will use the term simple
multiplex to refer the multiplex networks in which a node
participating to multiple layers (to be called a multiplex
node) should participate to all the layers. This restriction
is relaxed in more general multilayer interconnected net-
works. When every node in the network is multiplexed,
the system is said to be fully multiplexed. Otherwise, it is
called partially multiplex.

2.2.1 Matrix representation

One can fully represent the given instance of network
(or graph) with the adjacency matrix A with elements
Aij = 1 if the nodes i and j are connected by a link and
Aij = 0 otherwise. A straightforward generalization of the
adjacency matrix for multiplex network is the so-called
supra-adjacency matrix [50] or adjacency tensor [4]. For a
multiplex network with N nodes and � layers, the supra-
adjacency matrix A is an � × � matrix of N × N blocks
of layer-to-layer adjacency matrices. The (ij)-element of
(ab)-block, (Aab)ij , for a simple multiplex is thus given by:

(Aaa)ij =

{
1, if nodes i and j are linked within layer a,

0, otherwise,
(1)

and

(Aab)ii =

{
1, if node i is present in both layers a and b,

0, otherwise,
(2)

with i, j = 1, . . . , N , and a, b = 1, . . . , �. Throughout this
paper, the alphabetical indices (a, b, . . .) will be used for
the dummy index of layers, with the indices i and j re-
served for the node index. In the strict definition of sim-
ple multiplex networks, the off-diagonal blocks are always
diagonal matrices. Therefore the supra-adjacency matrix
representation is somewhat redundant to encode the link
structure of multiplex networks, but we shall reserve this
representation for its applicability to more general mul-
tilayer interconnected networks in which the interlayer
links can connect different nodes across layers, result-
ing in nonzero off-diagonal elements in the off-diagonal
blocks [50]. Initial idea had been applied to study the com-
munity structure [4]. Supra-Laplacian matrix of the mul-
tiplex network can also be defined by following the sim-
ilar generalization procedure [7], which has been applied
in formalizing diffusion-type linear dynamic processes on
multiplex networks [7,51,52] (see Sect. 4.2 for more de-
tails) and in generalizing the eigenvector centrality [53].
Generalization of the celebrated PageRank algorithm to
the multiplex network has also been proposed [54]. De-
spite its mathematical elegance and theoretical appeal,
the supra-adjacency matrix based representation per se is
not sufficient in that it does not fully encode the func-
tional context of multiplexity, which should be specified
separately.

2.2.2 Multiplex degree

The multiplex degree of node i (or multidegree as is some-
times called) is constructed as a list of its degrees in each
layer,

ki =
{
k

(1)
i , . . . , k

(�)
i

}
, (3)

with k
(a)
i =

∑
j(Aaa)ij , where the layer index is writ-

ten superscripted to avoid confusion with the node index
(note that in the general multilayer case, interlayer degrees
{k(ab)

i } need also to be specified).
The concept of degree centrality can be generalized in

many ways based on the multiplex degree. Proper defi-
nition of degree centrality would depend on the system’s
functional characteristics and the context of multiplex-
ity. For example, in a system with complementary layers
the total degree of a node could be a good candidate for
a degree centrality measure. In the presence of overlap-
ping links, however, either the total sum of the degree
in each layer or the total number of non-redundant links
over all the layers could be more meaningful, depending
on the physical process for which the centrality aims to
address. Moreover, in systems with cooperative or com-
petitive layers it would not even be clear whether the total
degree could be a meaningful quantity for centrality at all
(considering, for example, the case of mutual connectivity,
which is discussed in detail in Sect. 3). In general, the con-
cept of centrality of a node should be generalized with care
in multiplex networks, since a context-blind generalization
can lead to irrelevant or even misleading implications.
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Fig. 2. Schematic illustrations of three patterns of interlayer degree-correlated multiplex networks proposed in [5], the maximally
positive (MP), uncorrelated, and maximally negative (MN) cases of two layers (the red solid and the blue dotted layers).

The joint distribution of multiplex degree P (k) is a
natural generalization of the degree distribution P (k) for
single-layer network, encoding fundamental structural in-
formation of a multiplex network ensemble [14].

2.2.3 Correlations between layers

In multiplex networks, the correlation property of the
layer coupling is an important part of the context of mul-
tiplexity, introducing extra dimension of network correla-
tions in addition to the correlation properties of individ-
ual layers. The lowest-order layer-level correlation would
be the extent of node multiplexity, viz., what fraction
of nodes in the network appear across different layers
(multiplexed).

To the next order, the interlayer degree correlation
specify how correlated the degrees of a node are across dif-
ferent layers. It is easy to conceive the prevalence of this
type of correlation in multiplex systems: a person with
many friends would likely have many colleagues also in
the workplace, being a friendly person; an airway-hub city
tends to be very well-connected in ground as well, through
railways and highways. In the presence of interlayer de-
gree correlation the joint degree distribution P (k) does
not factorize into the product of individual layer’s degree
distribution. In parallel with the assortativity measure for
single-layer network [55], simplified measures based on the
correlation coefficients were introduced to quantify the in-
terlayer degree correlation: Pearson correlation coefficient
between two layers a and b,

ρab =
〈kakb〉 − 〈ka〉〈kb〉

σkaσkb

, (4)

where ka,b denote the degrees of the same nodes in differ-
ent layers, 〈x〉 the average over all multiplex nodes, and
σx the standard deviation thereof, has been used for this
purpose in empirical [18] as well as theoretical studies [9].
Other correlation coefficients like Spearman rank correla-
tion or Kendall’s τ rank correlation have also been consid-
ered [47]. The average degree in layer a, 〈ka〉, of nodes hav-
ing the same degree kb in the other layer b, 〈ka〉(kb), can

also encode the interlayer degree correlation property: in-
creasing (decreasing) behavior of 〈ka〉(kb) signifies positive
(negative) interlayer degree correlation [56]. More kinds
of interlayer correlations were introduced and empirically
measured in reference [47].

To investigate systematically the effect of interlayer
degree correlation, it has been proposed to compare three
specific patterns of correlated coupling, the maximally-
positive (MP) coupling, random (uncorrelated) coupling,
and the maximally-negative (MN) coupling [5] (Fig. 2).
Given the two layers, the MP-coupled multiplex is con-
structed by matching the nodes of the same degree-rank
from each layer. That is, the largest (lowest) degree node
in one layer is coupled to the largest (lowest) degree node
in the other layer. The MN coupling is constructed in
the opposite way of MP coupling. Effects of interlayer
degree correlation have been studied in this way for per-
colation [5], mutual percolation and robustness [57], and
cascading failures [58] problems.

Another important layer-level multiplex correlation is
the presence and extent of link overlap across different
layers. In social network literature, the term multiplexity
often refers to this feature, asking questions like how the
existence of link in one layer facilitates or constrains the
formation of the link between the same node pair in an-
other layer and what the distinctive functional role of the
overlapping link is to various social dynamical processes.
From theoretical point of view, the link overlap would be
statistically unlikely to exist if the layers were coupled
completely randomly (assuming sparseness of the layers).
Therefore the presence of link overlap signifies underly-
ing non-randomness of layer coupling in the system. Em-
pirical studies have shown that the link overlap between
two social network layers is indeed very significant, with
Jaccard index as high as 0.16 in the example of Pardus net-
work [18]. Functional roles of overlapping links have been
studied theoretically for mutual percolation [59,60] and
viability [61], revealing the intricate role that overlapping
links play in cooperatively-coupled multiplex networks.

To a higher-order correlation, the closed three-body re-
lation, or the triad, can measure the degree of transitivity
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of interactions, and has served as the basis for the no-
tion of network clustering [17]. As triangular relations in
multiplex networks can be closed not just within a layer
but also across layers, generalized notion is required. For
example, mutual friends of the same person can form busi-
ness relationship more easily than other random pairs,
through the brokering action by the mutual friend. The
so-called cross-layered clustering coefficient has been de-
fined [62–65] to address this new type of transitivity in
multiplex networks. A family of clustering coefficients
parametrized with the layer coupling strength has also
been proposed [66]. The functional meaning and impact of
cross-layer transitivity for cooperatively or competitively
coupled layers (such as mutual percolation introduced in
Sect. 3) remain to be fully examined.

2.2.4 Shortest path and other distance-based measures

Similar conceptual complication also applies to the no-
tion of shortest paths in multiplex networks and related
quantities like pairwise distance and centrality measures
like closeness, betweenness, and efficiency [17]. For sys-
tems with complementary/connective coupling (imagine
for example the interconnected transportation network)
it is relatively easy to generalize the notion in terms of
the optimal paths along which one can reach from one
node to another in minimum time, by incorporating the
difference in link capacity (say different average speed of
each transportation layer) and the layer-switching cost
(say average transit time). Quantities defined along this
line have been used in transport problems on multiplex
networks [62,65,67]. Still, the meaning and relevance of
the shortest path and distance-based measures in sys-
tems with cooperatively or competitively coupled layers
are much less clear (as in the case of mutual connectivity in
Sect. 3). Proper distance measures on multiplex networks
should thus be context-dependent and incorporate the
functional aspect of the layer coupling and the dynamic
process under consideration, calling for more attention.

2.3 Multiplex network models

2.3.1 Multiplex random graph models

Random graph models play two important roles in net-
work theory. First they provide null models for network
structure with which empirical structure of real-world net-
works can be compared and key structural characteristics
can be extracted. Second they serve as theoretical testbeds
on which systematic analytic and computational analyses
can be performed to establish basic understanding of the
structural and dynamical characteristics of the networks.

Random graph ensembles are constructed by specify-
ing structural constraints, such as the number of nodes
and links, degrees of nodes, degree-degree correlations be-
tween connected nodes, etc., as one tries to model net-
works with higher order correlations. Most elementary and

widely-used graph ensemble is the one with the degree se-
quence or degree distribution constrained. Such an ensem-
ble is straightforward to generalize to multiplex networks
by using the multiplex degree k = {ka} or its distribution
P (k) [5,8,14,15,29] (in more general multilayer case, the
interlayer degrees {kab} need also to be used [8,14]). Us-
ing such random graph models, percolation problems of
uncorrelated interconnected [14] and interdependent lay-
ers [15] were first studied. Percolation of multiplex net-
works with interlayer degree correlation was investigated
in references [5,29,35,57,68]. It is worthwhile to note also
the related predecessors like random graphs with colored
edges [69,70] and the multi-component static scale-free
network model [71].

Networks with finite fraction of overlapping links can-
not be constructed in the above way. To handle this, one
need to constrain the degrees for the overlapping links sep-
arately. In the case of multiplex networks with two layers,
for example, this can be done by decomposing the multi-
plex degree as k = {kA, kB, koverlap}, with koverlap repre-
senting the degree for overlapping links and the other two
for non-overlapping links. The random multiplex ensemble
with link overlap was introduced in reference [8] (therein
the overlapping links were called the multilinks). Using
this method the mutual percolation property of multi-
plexes with link overlap were investigated [59–61]. Spa-
tially embedded multiplex ensemble was also proposed as
a possible way to produce the link overlap in multiplex
networks [72].

2.3.2 Growing multiplex network models

Growing network models represent another important
class of network models, in which the generative rules
specifying how the new link is formed as the new nodes
and links are introduced in (pseudo) time to the network
define the particular random graph process. This class of
models have been useful in providing insights on the re-
lationship between the microscopic linkage rules and the
macroscopic network properties [17], as in the famed ex-
ample of the preferential attachment for scale-free net-
works [73]. On this basis, there have been attempts for
the multiplex network evolution model [9,56,74].

A notable new idea for multiplex evolution model is
that the layers coexisting in multiplex system may also co-
evolve. The multiplex layers do not merely evolve together
in time, but the evolution of layers can also become entan-
gled, in the sense that evolution of one layer is dependent
not only on the state of the current layer but also on those
of other layers. This idea has been implemented using the
preferential attachment scheme [9,56]. We illustrate the
main idea and results following [9].

In the coevolving multiplex network growth model, a
node is newly added to the system in each step and con-
nects to existing nodes following the growth kernel Π. The
coevolution property is implemented in the way that the
growth kernel Πa of a node’s degree in layer a depends
not only on its degree in that layer but also its degrees in
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Fig. 3. (a) Schematic illustration for the coevolution model.
Each step, a new node (orange) enters the system and estab-
lishes a link in each layer. To choose the node to connect in
the layer A, the new node refers to the nodes’ degrees not
only in that layer A but also in the other layer B (and simi-
larly in the layer B). Relative dependency to the other layer
is controlled by the coevolution parameter ε. (b) Joint degree
distribution P (kA, kB) for different coevolution parameter ε,
demonstrating the increasing interlayer degree correlation with
coevolution. (c) Interlayer degree correlation coefficient ρ as a
function of coevolution parameter ε and shift factor a. Adapted
from reference [9].

other layers,

Πa = f
(
k(1), k(2), . . . , k(a), . . . , k(�)

)
, (5)

where the superscripted layer indices are used. A simple
example for two-layer network (Fig. 3a) is provided by the
growth kernels in the form of coupled linear preferential
attachment, given by [9]:

ΠA ∝ [(1 − ε)(kA + a) + ε(kB + a)],
ΠB ∝ [ε(kA + a) + (1 − ε)(kB + a)], (6)

where the constant ε is the so-called coevolution param-
eter and a is the constant determining the layer’s native
degree exponent. The degree distribution of each layer is

shown to be independent of the value of ε and becomes
P (k) ∼ k−(3+a) for both layers. However, the degree cor-
relation between layers is strongly affected by the coevo-
lution parameter ε (Fig. 3b). Specifically the interlayer
degree correlation coefficient ρ defined by equation (4) is
obtained asymptotically as

ρ =
6ε + a

6ε + 2a
(7)

for a ≥ 0 [9]. The interlayer degree correlation increases
with the strength of coupling between the layers’ growth,
quantified by the coevolution parameter ε in this model
(Fig. 3c).

The model proposed in reference [56] is similar, and
was later extended also to the case of nonlinear growth
kernels [75], showing how the structural instability might
emerge in growing multiplex networks.

3 Problems with cooperative layer-coupling

In many multiplex systems, nodes can be influenced by co-
operative activity from multiple layers of the system. Of-
ten the overall synergistic effect is non-additive and non-
linear in individual layer’s effect, leading to a situation
that conventional single-layer network framework could
not address accurately. It therefore has been an outstand-
ing topic in multiplex network studies. In this section we
present an overview of the class of problems regarding the
structural and dynamical properties of multiplex networks
in which the layers are coupled in cooperative manner.
Problems belonging to this class include (i) the systems
in which the proper functioning of one layer is dependent
on the proper function of another layer and vice versa, of-
ten framed in terms of interdependent networks [15], and
(ii) the processes in which a node’s state is affected by syn-
ergistic influence from the states of multiple layers, such
as multiplex threshold cascade [6,76]. In what follows, we
will make concise discussion focusing on how to generalize
traditional network theory to multiplex networks with co-
operative layers and what the main effects of cooperativity
in layer-coupling are, with the examples of mutual perco-
lation, structural robustness, and cascading dynamics.

3.1 Mutual percolation

Being connected (or connectivity3 for short) is a minimal
condition for the functionality of a system. Percolation is
a classic statistical physics problem concerning the global
connectivity of a system. One way to generalize the con-
cept of connectivity in multiplex systems with many layers
is to require the simultaneous connectivities across differ-
ent layers, leading to the notions of mutual connectivity

3 In graph theory, the term connectivity is used to specifically
refer to the minimum number of nodes that need to be removed
to disconnect the remaining nodes from each other. Here we
are using the term in a loose sense.
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Fig. 4. (a) Illustration for the notion of mutual percolation. On the left, even though each layer is well connected, the multiplex
does not have a mutual component. On the right, the multiplex gains a big mutual component (marked in orange), after one more
link is added to each layer. (b) The size of giant mutual component as a function of the layer mean degree z for multiplex ER
networks with � = 1, 2, 3, 5, 10 layers. The dot denotes the size of jump at the transition. (Inset) The scaling plot of M −Mc vs.
z−zc above the transition, showing the different scaling exponent β = 1 for � = 1 and β = 1/2 for � = 2. (c) Mutual percolation
of the partially-multiplexed ER networks with multiplex fraction q = 0.1 and q = 0.7, displaying continuous and discontinuous
transitions, respectively. (Inset) The phase diagram in (q, z)-plane with mutual-percolated and unpercolated phases separated
by lines of continuous (dotted) and discontinuous (solid) transitions, joining at the tricritical-like point (dot).

and mutual percolation [15,77]. Motivations of such defini-
tion may come from the interdependent networks of crit-
ical infrastructure [37] and systems with multiple critical
resources [10]. It is a type of cooperative layer-coupling
in the sense that each and every layer needs to operate
concurrently for the proper functioning of the system as
a whole.

To formalize the problem of mutual percolation, we
first define the mutually-connected component (or the mu-
tual component for short) as the set of nodes in which
each pair is connected within each and every layer simul-
taneously [15,77] (Fig. 4a). The mutual component which
is extensive in network size, if it exists, is called the gi-
ant mutual component. The notion of mutual percolation
was first introduced in reference [15] while describing the
iterative cascade of failures in interdependent networks.
Key finding of [15] was the discontinuous transition in
the size of giant mutual component at the critical frac-
tion of random node removals, colloquially referred to as
the abrupt collapse of the system. Such a discontinuous
mutual percolation transition is a strong departure from
single-layer network percolations, which is a major rea-
son for much attention from statistical physicists studying
network theory [20].

Later the problem was re-casted in purely structural
terms in reference [77], by noting that at the end of the

cascade of failure process all the remaining (unfailed)
nodes should form mutually-connected components. This
formulation allows a more easily-accessible analytical ap-
proach [77,78] by extending the existing methods from
single-layer network theory, which we will take as the ba-
sis of the presentation that follows. The analytic approach
put forward in reference [15], which explicitly tracks the
back-and-forth cascade steps of failure, is slightly more
involved, yet both approaches yield the equivalent answer
when it comes to the giant mutual component.

Mutual components in a given network can be found
algorithmically by straightforward iterations towards the
requirement of the mutual connectivity [15]. More efficient
algorithms for finding the mutual components have also
been proposed [79,80].

Analytically, the size of giant mutual component of
multiplex network can be obtained for networks with
locally-treelike undirected uncorrelated layers [57,77,78],
as follows. One first consider the probability wa that
the node reached by following a randomly chosen a-layer
edge does not belong to the giant mutual component.
These probabilities satisfy the coupled self-consistency
equations,

1−wa =
∑
k

kaP (k)
za

(
1 − wka−1

a

) �∏
b=1,b�=a

(
1 − wkb

b

)
, (8)
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with za is the mean degree of a-layer and a = 1, . . . , �.
Terms inside the parentheses give the probability that at
least one neighbor in a- and all other layers, respectively,
of the node belongs to the giant mutual component, the
product of which becomes the probability that the node
itself belongs to the giant mutual component under the
condition of mutual connectivity. By averaging this prob-
ability over k weighted by the factor kaP (k)/za, giving the
probability that the multiplex degree of the node reached
by following a randomly chosen a-layer edge is k, one
can end up with equation (8). The size of giant mutual
component is obtained by the probability M that a ran-
domly chosen node belongs to the giant mutual compo-
nent, which by the same reasoning is given by

M =
∑
k

P (k)
�∏

a=1

(
1 − wka

a

)
, (9)

with wa’s being the smallest solution (in the physical
range [0, 1]) of equation (8). Note that this approach re-
duces to that of the ordinary percolation for single-layer
networks for � = 1.

Specific application to multiplex networks with Erdős-
Rényi (ER) layers illustrates the key features. For multi-
plex ER networks with � layers of equal mean degree z,
equations (8) and (9) reduce to a single equation for M as

M =
(
1 − e−zM

)�
, (10)

which undergoes a discontinuous transitions from unper-
colated (M = 0) to mutual-percolated phase (M > 0) at
the critical layer mean degree, zc(�) (Fig. 4b, main panel).
For duplex ER networks (� = 2), the transition point is
zc(2) = 2.455407 . . ., which is significantly higher than
that of ordinary (single-layer) percolation, zc(1) = 1, and
the jump in the giant component size at the critical point
Mc(2) = 0.511699 . . . [15,77].

The discontinuous mutual percolation transition shows
some unusual properties compared to the typical first-
order phase transition. Firstly, the transition does not ex-
hibit hysteresis. Transition occurs at the same point as
the mean degree is either increased from below or de-
creased from above the transition point, providing the
basis for the equivalence between the two approaches
of references [15,77]. The nature of discontinuous mutual
percolation transition was further investigated in refer-
ence [78], showing that the transition is of hybrid type (or
mixed order), with discontinuous jump in the order pa-
rameter (called the giant viable cluster size in Ref. [78])
followed by the critical scaling,

M − Mc ∼ (z − zc)β , (11)

above the transition point. For duplex ER networks, the
critical exponent β = 1/2 (Fig. 4b, inset), as in the
bootstrap and the k-core percolation on single-layer net-
works [81,82]. The average size of finite mutual compo-
nents, an analogous quantity to the susceptibility in ordi-
nary percolation, does not diverge at the transition point.
Instead, the critical scaling above the transition point is

attributed to the diverging scale of avalanches upon the
node removal as the transition point is approached from
above [78].

3.1.1 Partial multiplexity

Situation may occur that some of the nodes in a multi-
plex do not participate in all the layers, a case that might
be called the partial multiplexity. This generalization has
been studied in both approaches [77,83]. Let us consider
the multiplex network in which the fraction q of nodes
participate in both layers (multiplex nodes) but the re-
maining 1 − q fraction of nodes in each layer are specific
to that layer. The generalized mutual component is de-
fined as the set of connected nodes in which every multi-
plex node is connected in both layers simultaneously. In
general the size of generalized mutual component in differ-
ent layers can be different. For duplex ER networks, the
sizes of generalized mutual components in the two layers
are obtained by generalizing equation (10) with � = 2. It
reads [77]

MA =
(
1 − e−zAMA

) (
1 − qe−zBMB

)
,

MB =
(
1 − qe−zAMA

) (
1 − e−zBMB

)
, (12)

where Ma and za are the generalized mutual component
size and the mean degree of a-layer. One can see that
MA �= MB when zA �= zB in general with q �= 1. A key
feature of this model is that depending on q and zi’s the
nature of transition can change from discontinuous to con-
tinuous, exhibiting the tricritical-like point [77] (Fig. 4c).

In the framework of interdependent networks, more
general scenario was considered [77,83], such that in A-
layer a fraction qA of nodes are dependent on a node in
B-layer (and vice versa). The dependency relation can also
be unidirectional, making it more general than the sim-
ple multiplex networks. It can be treated analytically in
similar way and gives qualitatively similar picture as the
previous partial multiplex case. Through this setting with
zA = zB, the critical behavior of the giant generalized
mutual component was obtained, as MA ∼ (qA − q∗A)β

with β = 1 along the line of discontinuous transitions
whereas β = 1/2 when qB = q∗B is fixed, with (q∗A, q∗B)
denoting the point at which the lines of discontinuous and
continuous transitions join [83]. A phenomenological anal-
ogy to liquid-gas transition exhibiting the critical point
was proposed in reference [83], but further understand-
ing of the nature of symmetry-breaking in this problem
is required to establish a more complete correspondence.
Generalizations of partially interdependent networks with
both dependency and connectivity links have been studied
in references [84,85].

3.1.2 Network of networks

In the framework of interdependent layers, one can further
extend to the general case of the network of interdepen-
dent layers, dubbed as “the network of networks” (NoN)
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and studied for a number of different topology [86–88]. A
notable result for NoN is that when the interdependency
between networks (layers) is such that there is a one-to-
one dependency relation between all the nodes in each
pair of connected layers, the mutual component does not
depend on the topology of the NoN [89]. It turns out that
the mutual component of such NoN coincides with that of
the fully-connected NoN constructed with the same set of
layers, i.e., the simple multiplex network. As an instance
in which the interdependency between layers is not simple,
the so-called configuration model of NoN was studied [90].
In this model the nodes are assigned a given number Qa

of interlayer links in each layer a, which are connected in
the configuration-type algorithm. A peculiar behavior is
found by using the message passing calculation, that the
NoN can undergo a series of multiple transitions when the
interlayer degrees Qa are distributed heterogeneously [90].

3.1.3 Spatially embedded multiplexes

Many complex systems existing in the real world are em-
bedded in two dimensional (2D) Euclidean space to some
extent [91], as in the cases of multiplex transportation sys-
tem or interdependent critical infrastructure. The mutual
percolation problem for spatially embedded multiplexes
poses theoretical challenge as well to cope with the correla-
tion imposed by the spatial constraints. First, the mutual
percolation of duplexes with diluted 2D square lattice was
studied [92], claiming that the mutual percolation transi-
tion becomes continuous and the order parameter expo-
nent β could be larger than that of ordinary percolation,
suggesting that the mutual percolation transition can be
less abrupt than ordinary percolation transition, in sharp
contrast to the cases of random networks. Specifically in
2D, it was estimated that β = 0.171(2) for duplex square
lattices, compared to βsingle = 5/36 = 0.1386 . . . for a
single-layer 2D square lattice. This claim was challenged
in reference [93], arguing that the exponent β should have
the same value in both duplex and single-layer lattices.
Lacking the exact solution for the multiplex lattices, how-
ever, the conflict has not been resolved completely as yet.

Later, a variant of multiplex lattice model, called the
interdependent lattice networks, in which the node in one
lattice makes a dependency link to a node in the other lat-
tice randomly chosen within a certain distance r [94]. For
r = 0 the model reduces to the multiplex lattice model
of [92,93]. As r → ∞, the two lattices are coupled by
completely random dependency links, thereby one can ex-
pect the transition to be discontinuous as in the multiplex
random networks. In between there might exist a point
r∗ separating the two behaviors. For two-layer interde-
pendent lattices it was estimated that r∗ ≈ 8 (in lattice
unit) [94]. For r < r∗, the transition is continuous, whereas
it becomes discontinuous for r > r∗. More recently, it was
shown that for r → ∞, the mutual percolation transition
in even partially-interdependent lattices is always discon-
tinuous as long as the fraction of dependent nodes q > 0,
that is, any nonzero fraction of dependent nodes can drive
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Fig. 5. Mutual percolation of duplex ER networks with (a) in-
terlayer degree correlation of three different kinds, the MP, un-
correlated, and MN couplings, and (b) link overlap with differ-
ent overlap fraction r = 0.2, 0.4, 0.6. (Inset) The size of jump
Mc at the transition as a function of the overlap fraction r,
which decreases gradually to zero as r → 1. Adapted from
references [57] (a) and [61] (b).

the transition to be discontinuous [95]. This result was in-
terpreted that the spatially embedded multiplex networks
can be extremely more broadly vulnerable to abrupt (dis-
continuous) collapse than random networks.

3.1.4 Effect of correlated multiplexity

The effect of correlated multiplexity on mutual percolation
has been addressed in terms of the interlayer degree corre-
lations [35,57,68,96] and the link overlap [59–61]. The most
commonly-observed interlayer degree correlation would be
a positive interlayer degree correlation, the effect of which
has been the major subject of studies [35,68,96]. The main
result of those studies is that the positive interlayer degree
correlation (also termed the intersimilarity in Ref. [35])
makes the multiplex system more robust to random fail-
ure [35,57,68], in the sense that the mutual percolation
transition point becomes lower (Fig. 5a). The study has
been extended to include negative interlayer degree corre-
lation as well [57]. More recently, in the framework of in-
terconnected networks a particular form of positively cor-
related interlayer connection pattern was introduced as an
optimal coupling architecture for robustness of the mutual
connectivity to random failure [97], offering a consistent
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perspective with the earlier findings from the multiplex
and interdependent networks. It was also proposed that
the suggested optimal pattern might underlie the topo-
logical stability of the interconnected functional brain
networks [97]. To what extent such broad perspective of
topological stability could extend to the actual functional
stability of given multiplex systems remains an outstand-
ing open problem.

Another pervasive kind of correlated multiplexity is
the link overlap. The overlapping link plays a distinctive
role in mutual percolation, in that the nodes connected
by overlapping links form a mutual component by them-
selves. Therefore the link overlap would facilitate mutual
percolation. In the extreme case where every link is over-
lapping link, all the layers becomes identical and the mu-
tual percolation problem reduces to ordinary percolation
of the single layer, showing continuous transition. A pri-
mary question of theoretical interest would then be the ex-
istence of the nontrivial value of the fraction of overlapping
links r across which the nature of transition changes from
discontinuous (as in r = 0) to continuous (as in r = 1).
This question was examined by two groups independently
using different methodology [59,60], only to reach conflict-
ing conclusions. The two approaches were later scrutinized
in reference [61], to show that they in general apply to dif-
ferent percolation processes (see the next section for more
details).

To illustrate the effect of link overlap, let us consider
the case of duplex ER networks of layers with equal mean
degrees ztotal among which the fraction r is the overlap-
ping link. As the overlap cluster forms a mutual compo-
nent by itself, it is useful to renormalize it as a supernode,
which is connected by non-overlapping links to other su-
pernodes (overlap clusters). To obtain the giant mutual
component size, one needs to augment equation (10) by
taking into account the sizes of supernodes, the distri-
bution of which is given by the component size distribu-
tion of the network formed by overlapping links, denoted
R(m). The giant mutual component size M is then given
by [59,61]:

M = R∞ +
∞∑

m=1

R(m)
(
1 − e−mzM

)2
, (13)

where R∞ is the probability that a randomly chosen node
belongs to the infinite-size overlap cluster and z is the
mean degree for non-overlapping links, z = ztotal(1 − r).
Solving this, it was obtained that the transition remains
discontinuous as long as the overlap fraction r < 1
(Fig. 5b), with the jump Mc at the transition vanishes
gradually as r → 1 (Fig. 5b, inset); the tricritical point
claimed in reference [60] is found absent. This means that
despite its facilitating role, the link overlap per se is insuf-
ficient to change the nature of transition in multiplex ER
networks. Yet the possibility of nontrivial tricritical point
in layers of other topology remains open. Furthermore, it
is left as a theoretical challenge to extend the analytic
theory beyond the simple multiplex cases [61].

3.1.5 Related models: viability, weak and k-core percolation

In the mutual percolation problem, an implicit assump-
tion was that the connectivity by itself is sufficient for
functionality of the system. In some multiplex systems,
the connectedness among nodes per se may not be suffi-
cient but the connected component can be functional only
when it is connected also to the resources essential for the
functionality of the system. A representative example in
this class is the modern city, which is supported by mul-
tiple layers of resource supply network such as power and
water supply networks. These vital resources are not pro-
duced in every node; rather they are generated from a
specific set of nodes (power stations and water sources,
respectively). Taking this feature into account, a model
of viability of multiplex system with multiple resource de-
mands was proposed [10], which is defined as follows.

Consider a network with �-multiple layers, where each
layer of the multiplex network corresponds to a certain re-
source supply network. A given fraction ρ of nodes (called
the resource nodes) generates and distributes resources
essential to be viable. Only viable nodes can function
properly and transmit resources further to their connected
neighbors. Then, a node is viable only if it can reach, via
other viable nodes, to a resource node in each and every
layer. The viability V of the system is defined as the frac-
tion of viable nodes, given the network parameters and
distribution of resource nodes. To compute the viability
V , one can set up equations analogous to those for the
mutual percolation, equations (8) and (9) as [10]

1 − va = ρ + (1 − ρ)
∑
k

kaP (k)
za

(
1 − vka−1

a

)

×
�∏

b=1
b�=a

(
1 − vkb

b

)
, (14)

where va is the probability that the node reached by fol-
lowing a randomly chosen a-type link (a = 1, . . . , �) is not
viable, and

V = ρ + (1 − ρ)
∑
k

P (k)
�∏

a=1

(
1 − vka

a

)
. (15)

In equations (14) and (15), the first term on the right hand
side is the probability that the chosen node is a resource
node and the second term gives the probability that it is
not a resource node but is connected to the giant viable
cluster.

Applying to duplex ER networks with equal layer
mean degree z, one has the single equation for V anal-
ogous to equation (10) as

V = ρ + (1 − ρ)
(
1 − e−zV

)2
. (16)

Solving equation (16), one obtains two stable solutions for
a range of parameters ρ and z, suggesting the bistability
in viability. Viability undergoes discontinuous jump as one
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Fig. 6. (a) Illustrations of the CA and the CD algorithms
for viability. Resource nodes (squares) generate resources. If a
node connects with resource nodes through each type of link,
denoted by the solid and dashed lines, the node is viable (filled
circles) and can transmit resources further to its neighbors. If
not, the node is unviable (open circles). Shaded (green) circles
denote the node whose state is to be updated (activated in CA
and deactivated in CD) at each step. (b) Hysteresis curve of V
with ρ0 = 0.02. Starting from the well-connected high viability
state, the systemic collapse (◦) and the subsequent recovery
(�) exhibit different curves. Dashed line indicates � = 1 case for
comparison, without hysteresis. Adapted from reference [10].

of the two stable solutions loses its stability. The two so-
lutions are shown to correspond to outcomes of different
algorithms for identifying the viable components, called
the cascade of activations (CA) and the cascade of deacti-
vations (CD), respectively [10] (Fig. 6a). This means that
the viability of a system depends also on the way it reached
the current state, that is, the viability exhibits hysteresis
(Fig. 6b). In the limit ρ → 0, equations (14)–(16) reduce
to those for mutual percolation equations (8)–(10). In this
sense the viability model can be considered as a general-
ization of mutual percolation. In this limit, only the CD
branch remains meaningful (the CA branch solution be-
comes trivial, V = 0 for all z), which coincides with the
solution for mutual percolation.

In the presence of link overlap, richer picture
emerges [61]. Viability still exhibits bistability, corre-
sponding to the outcomes of the CA and CD algorithms,
respectively, but they do not come from the multiple so-
lutions of a single equation but are obtained as the so-
lutions of two different equations describing the CA and
CD algorithms, respectively. Interestingly, the two differ-

ent approaches proposed for solving the mutual percola-
tion problem with link overlap [59,60] describe the two
algorithms, the CD algorithm by the method of [59] and
the CA by that of [60]. This finding suggests that the
multiplex system can in general respond to activation and
deactivation processes in inherently different ways.

This property has also been observed in similar perco-
lation models called the weak bootstrap and pruning per-
colations [11]. The weak bootstrap percolation proposed
in reference [11] is the same as the CA algorithm in the
viability problem, whereas the weak pruning percolation
is similar but not identical to the CD algorithm4, and it
is found that the two percolation processes yield different
results for multiplexes [11]. k-core percolation was gener-
alized to multiplex networks into k-core percolation [100],
in which k-core is defined as the largest subgraph with
each node therein having at least ka edges within the
subgraph in each layer, with k = {ka}. Hybrid phase
transition akin to that of mutual percolation was found
except for (kA, kB) = (1, 1), for which the transition is
continuous [100].

3.2 Robustness against attacks

Network robustness has been a major topic of network
theory [101], formulated as various percolation problems.
Compared to the usual percolation problem concerning
random dilution [102], the robustness problem focuses on
the response of the system to a variety of different ways of
dilution, such as node removals according to their degrees,
commonly referred to as the intentional attack [103,104].

For the class of multiplex networks with cooperative
layer coupling, it is the giant mutual component that is
the primary quantity for addressing the system’s robust-
ness. The size of the giant mutual component M of mul-
tiplex networks with locally-treelike uncorrelated layers
after the node removals can be obtained as the generaliza-
tion of equations (8) and (9) by following reference [105].
It reads [57]

1 − wa =
∑
k

kaP (k)
za

[1 − φ(k)]

× (
1 − wka−1

a

) �∏
b=1
b�=a

(
1 − wkb

b

)
, (17)

M =
∑
k

P (k)[1 − φ(k)]
�∏

a=1

(
1 − wka

a

)
, (18)

where the function φ(k) encodes the removal strategy in
terms of the probability that the node with multiplex de-
gree k is removed. For instance, for the uniform random re-
moval of fraction f of nodes (as in usual site percolation),

4 It might be worthwhile to note that this nomenclature is
somewhat unfortunate, in that the original bootstrap percola-
tion [98] is defined as a pruning process, and the corresponding
activating process is known as diffusion percolation [99].
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φ = f (constant). For the intentional attack based on the
node’s total degree K =

∑�
a=1 ka, φ = Θ(K −Kc), where

Θ denotes the Heaviside step function and Kc is the cutoff
total degree for the attack [57]. Several attack strategies
and multiplex scenarios have been studied such as the tar-
geted attack with φ(k) ∝ kα with adjustable parameter α
on fully multiplexed networks (in the form of interdepen-
dent networks) [106], on partial multiplexes [107], and on
network of networks [108]. Localized attack on spatially
embedded networks was also studied [109].

Network robustness property would also be strongly
influenced by the correlated multiplexity [57,61]. Against
random failures, the positive (negative) interlayer degree
correlation is shown to enhance (decrease) the robustness
of mutual connectivity in multiplex random networks. For
the case of total-degree based attack, the vulnerability de-
pends not only on the correlated couplings but also on the
initial density of the networks [57]. Such non-monotonic
and protocol specific responses of multiplex networks to
damage could complicate the design of robust coupled sys-
tems [97,110,111], as the optimal structure could strongly
depend on the type of damage considered.

3.3 Cascades and complex contagion

Percolation problems are utterly concerned with the struc-
tural or topological connectivity of the system. Although
the network structure itself can be a strong determinant
of the system’s function and robustness, there are many
other phenomena in which the specific dynamical process
occurring on top of the structure also confers important
consequences [112]. In such phenomena, besides the net-
work structure, each node is endowed some attribute in-
dex (or state function) which is affected by the neigh-
bors’ states. The particular way the nodes’ states affect
one another defines the dynamical processes. In this sec-
tion we survey a particular class of dynamical processes
for which the cooperative layer coupling has been a cru-
cial ingredient when generalized to multiplex systems, the
cascade models. It includes the Watts-type threshold cas-
cade models [6,76,113], the sandpile models [114,115], and
the Motter-Lai-type overload cascade models [58].

The threshold cascade model began as a model of how
the behavioral adoption spreads over the social commu-
nity [116], and was later generalized and formulated fur-
ther by [117,118]. A simple mathematical formulation by
Duncan Watts [118] has become a standard model, called
accordingly the Watts model. Each individual (node) can
in one of two states, active and inactive. An inactive node
decides to activate if the fraction of neighbors who are
already active exceeds the threshold. This activation pro-
cess occurs as a cascade until no further activation can be
made. It is known that in networks, depending on network
parameters and threshold distribution the so-called global
cascade might occur, by which a finite fraction of large (in-
finite, theoretically) network can be activated from a van-
ishingly small fraction of initially-active seed nodes [118].

This model has been extended to multiplex net-
works [6,76], in which the social influences from different

layers are integrated non-additively and nonlinearly. The
analytical approach applicable to locally-treelike uncorre-
lated layers proceeds in a similar but slightly different logic
as that of mutual percolation (see Refs. [6,76] for detailed
arguments). The cascade size ρ from random-distributed
initial seeds of fraction ρ0 can be calculated as

ρ = ρ0 + (1 − ρ0)
∑
k

P (k)
k∑

m=0

�∏
a=1

Bka
ma

(
q(a)
∞

)
F̄ (m,k),

(19)

where Bk
m(q) is the shorthand notation for binomial dis-

tribution,
(

k
m

)
qm(1 − q)k−m. The quantity {q(a)

∞ } is the
fixed point of the coupled recursion relation,

q
(a)
n+1 = ρ0 + (1 − ρ0)

∑
k

kaP (k)
za

×
ka−1∑
ma=0

{kb}∑
{mb}=0,b�=a

Bka−1
ma

(
q(a)
n

)

×
∏
b�=a

Bkb
mb

(
q(b)
n

)
F̄ (m,k), (20)

starting from every q
(a)
0 = ρ0. F̄ (m,k) is the response

function encoding the activation rule, giving the probabil-
ity that the node with m = {ma} active neighbors among
its multiplex degree k will activate. This analytical ap-
proach could further be generalized to multiplexes with
correlated and modular layers by employing methods de-
vised for the single-layer networks [119,120].

Two simple yet representative activation rules are con-
sidered (Fig. 7a): (i) the OR rule, in which the node acti-
vates once the threshold is met in at least one layer, and
(ii) the AND rule, in which the node activates only after
the threshold is met in all its social layers. Intuitively, the
OR rule would facilitate the cascade, whereas the AND
rule will impede it, which are confirmed by both the-
ory and simulations [6,76]. A less intuitively clear picture
emerges when the two activation rules are mixed in pop-
ulation [76]. As the fraction of nodes following the AND
rule increases, there exists a critical fraction above which
the transition to global cascade becomes discontinuous,
compared to the continuous transition below this fraction
(Figs. 7b and 7c), followed by tricritical-like scaling behav-
ior [76]. This is another instance in which the cooperative
layer coupling, now driven by dynamics, induces discontin-
uous transition in multiplex systems. Different multiplex
generalization of Watts model has also been studied [113].

Another prototypical model of cascades on networks is
the model of cascading failure based on loads, put forward
by Motter and Lai [121]. Each node i is assigned its own
capacity, Ci = (1 + α)Li, setting the maximum load that
the node can endure, where α is the tolerance parameter
and Li is the load defined as the total number of shortest
paths passing through that node i [122]. Initiated by the
failure (removal) of a small set of nodes, the global redis-
tribution of the shortest paths and thereby the load can
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Fig. 7. (a) An example multiplex configuration for illustrat-
ing the two response rules. Assuming the uniform threshold for
activation R = 1/2, green (dark) circles denote active nodes
and the light (white, orange) ones the inactive nodes. The or-
ange node will activate itself under the OR rule, but will re-
main inactive under the AND rule. (b) The cascade size ρ with
the initial seed fraction ρ0 = 0.001 and the uniform threshold
R = 0.18 as a function of the layer mean degree, z, and the
fraction of OR nodes, E . Red dot marks the cusp point at which
the lines of continuous and discontinuous transition join. Three
vertical planes with the guideline denote the slices for which
the panel (c) is drawn. (c) The cascade size ρ, with the same
parameter as (b), as a function of z, for three different E = 0.2
(green dotted), 0.5 (orange dashed), and 1.0 (red solid). For
E = 0.2 the transition to global cascade occur discontinuously,
whereas it is continuous for the other two cases. Adapted from
reference [76].

induce the cascade of failure of overloaded nodes whose
load becomes to exceed the capacity. Its distinctive prop-
erty is that the cascade occurs in a nonlocal manner, un-
like the threshold cascade models introduced above. The
Motter-Lai-type models have been studied on multiplex
networks with a particular focus on the effect of interlayer
degree correlation and the optimal coupling patterns [58].
For instance, it has shown that the positive interlayer cor-
relation is beneficial in mitigating the cascades compared
with other coupling patterns, in line with the findings in
mutual percolation [58].

4 Problems with complementary
layer-coupling

Different layers in the coupled transportation system pro-
vide alternative or complementary means of traveling from
one place to another. In such systems, malfunction of one
single layer does not fundamentally alter the functional-
ity of the whole system. In this section we consider the
problems arising in such multiplex systems with comple-
mentary layers. Complementary layers are coupled in con-
nective way5, and often the whole system can be regarded
as a single super-network in which the network layers con-
nected by interlayer links. Hence the problems in this class
are admittedly much more straightforward to generalize
from single-layer framework than the problems with, say,
cooperative layers. This aspect might have played a role in
prompting skepticism around the whole multiplex network
framework. Notwithstanding, it is still useful to retain the
multiplex framework in such problems for the sake of gen-
erality and methodological clarity, as we shall argue below.

4.1 Percolation

Percolation of a system of � interconnected layers was first
addressed systematically in reference [14]6, although there
had been related predecessors like the graphs with col-
ored edges [69,70]. In this problem, one is primarily in-
terested the existence of the giant component, that is the
extensive subset of nodes which are connected through
links regardless of their types (layers). They developed
a generating function method, by generalizing the well-
established single-layer framework for the interconnected
layers [14]. Methodologically this framework could also
find predecessors in the percolation of clustered single-
layer networks [123]. Below we will present the framework
applied specifically to simple multiplexes [29,57]. The gen-
eral framework is not too different, and the interested
readers are referred to [14].

Given the multiplex degree distribution, P (k), and its
generating function,

G0(x) =
∑
k

P (k)
�∏

a=1

xka
a (21)

5 In this respect many problems in this class can also be
formulated as the interconnected networks, especially in terms
of mathematics.

6 Comparison of the two seminal papers [14,15] may reveal an
interesting perspective regarding how the community perceives
on multiplex problems of different kinds. Both works were, to
our knowledge, first presented to wide public at the Interna-
tional Conference on Network Science (NETSCI) in May 2009
and uploaded in parallel onto arXiv that summer. Buldyrev
et al.’s work on mutual percolation was eventually published
in Nature in 2010 [15] and is by now cited about 800 times
according to Google Scholar; Leicht and D’Souza’s work is still
unpublished [14], with some 50 citations thus far.
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Fig. 8. Sizes of the giant component S (solid lines) and the
giant bicomponent B (dotted lines) for the MP (red), the un-
correlated (black), and the MN (blue) couplings of duplex ER
networks. Note that the two curves for the MP coupling overlap
completely. Adapted from reference [57].

with x = {xa}, the generating function for the remain-
ing degree distribution after following a randomly chosen
a-layer edge is obtained as

G
(a)
1 (x) =

1
za

∂

∂xa
G0(x). (22)

The giant component size S of the multiplex of locally
treelike uncorrelated layers can be obtained using these
generating functions as [29,57]

S = 1 − G0(u), (23)

where u = {ua} is the probability that a node reached
by following a randomly chosen a-layer edge does not be-
long to the giant component, satisfying the coupled self-
consistency equations,

ua = G
(a)
1 (u), with a = 1, 2, . . . , �. (24)

The size B of the giant bicomponent defined as the ex-
tensive subset of nodes connected by at least two disjoint
paths [124] is also calculated for multiplex networks as [57]

B = 1 − G0(u) −
∑

a

(1 − ua)zaG
(a)
1 (u). (25)

The last term gives the difference between the giant com-
ponent S and bicomponent B. The condition for existence
of the giant component S > 0 and that for the giant bi-
component B > 0 coincide and is given as that the largest
eigenvalue of the Jacobian matrix J of equation (24) at the
trivial solution u = {1, . . . , 1} be larger than unity [57].

Applying to duplex ER networks with layers of equal
mean degree z, a number of peculiar behaviors of cor-
related multiplex random networks have been observed
(Fig. 8). First, the MP interlayer degree correlation was
shown to promote the percolation to the extreme, in that
the percolation threshold decreases all the way to zc = 0.
On the other hand, in the MN correlated duplexes, the
percolation is significantly delayed as zc = 0.838587 . . .,

compared to zc = 1/2 for the uncorrelated coupling, but
once it occurs the giant component grows more quickly
and can span the whole network (S = 1) at a finite mean
degree z∗ = 1.146193 . . . per layer [5,29]. As for the giant
bicomponent, in MP correlated duplexes its size B is ob-
tained identical with the giant component size S, mean-
ing the giant component itself becomes a bicomponent,
whereas in general the giant bicomponent grows more
slowly than the giant component [57].

4.2 Diffusion

Diffusion is one of the simplest yet important dynami-
cal processes, which has been studied extensively on net-
works [125,126]. A key determinant of diffusion dynamics
on networks is the spectral property of the Laplacian ma-
trix, and in this sense diffusion dynamics is determined
chiefly by the structure of networks. On this basis, there
has been development of the mathematical formalism for
studying diffusion processes on multiplex networks using
the supra-Laplacian matrix [7,51]. Suppose a simple �-plex
network of N nodes, in which particles diffuse with diffu-
sion constant Da along each layers and Dab across different
layers (Fig. 9a). Equations governing the time evolution
of particle densities x

(a)
i at each node i on layer a are

given by:

dx
(a)
i

dt
=Da

N∑
j=1

w
(a)
ij

(
x

(a)
j − x

(a)
i

)
+

�∑
b=1
b�=a

Dab

(
x

(b)
i − x

(a)
i

)
,

(26)
with w

(a)
ij being the link-weight matrix of layer a, which

can be recasted in matrix form as [7]

dx
dt

= Lx, (27)

with x = (x(1)
1 , . . . , x

(1)
N , . . . , x

(�)
1 , . . . , x

(�)
N )T and L being

the supra-Laplacian matrix of the multiplex. For duplexes,
the supra-Laplacian matrix can be written explicitly as

L =

(
DALA + DABI −DABI

−DABI DBLB + DABI

)
, (28)

where LA and LB are the Laplacian matrix of each layer,
defined by La = Sa−Wa, where Wa is the weights matrix
of layer a and Sa is a diagonal matrix with the elements
(Sa)ii =

∑
j w

(a)
ij [17]. Of particular importance is the

smallest nonzero eigenvalue λ2 of the (supra) Laplacian
matrix L which sets the diffusion timescale τ as τ = 1/λ2,
which characterizes how fast the system could relax to the
stationary state (corresponding to λ1 = 0).

By investigating the eigenvalue spectrum of L, equa-
tion (28), a number of general conclusions have been
drawn [7], some of which we highlight below. First, the
diffusion timescale τ or equivalently λ2 undergoes a qual-
itative change at certain threshold interlayer diffusion
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(a)

(b)

DA

DAB

DB

layer A

layer B

Fig. 9. (a) Schematic illustration for the diffusion process on a
duplex network, with the intralayer diffusion constant, DA and
DB , and the interlayer diffusion constant, DAB . (b) Compari-
son between the second smallest eigenvalues λ2 of the different
Laplacians, as a function of the interlayer diffusion constant
DAB (denoted as Dx here) with DA = DB = 1. Note that
the diffusion timescale τ is given by τ = 1/λ2. Panel (b) is re-
produced from reference [7] with permission from the authors
and the publisher. Copyright (2013) by the American Physical
Society.

strength DAB (Fig. 9b): if DAB is below the threshold,
the diffusion timescale is completely governed by the inter-
layer diffusion, as τ = 1/(2DAB). On the other hand, for
DAB above the threshold, the timescale becomes depen-
dent on the details of multiplex coupling, but it is always
that the diffusion on the multiplex is faster than the dif-
fusion in the slowest layer of the two. Only for sufficiently
large DAB � 1, the diffusion on multiplex can become
faster than the diffusion on any individual layer in iso-
lation, referred to as the superdiffusive property in refer-
ence [7]7. Further investigation of the supra-Laplacian ma-

7 It is another misleading terminology, in that the term su-
perdiffusion originally refers to the superlinear scaling of mean-
square displacement in time in diffusive processes. Here the
superdiffusive property denotes merely an enhancement of ef-
fective diffusion constant, rather than a change in dynamic ex-
ponent. It is an intriguing open question whether scaling prop-
erties of diffusion dynamics and random walks such as spectral
dimension [126] could be modified by multiplex coupling.

trices of interconnected networks has identified the struc-
tural transition underlying the non-analyticity in diffu-
sion timescale [16], which was later shown to be related
with the reducibility transition of the supra-Laplacian
matrices [127].

Question of whether or not would it be possible to re-
duce a multiplex network into an equivalent single-layer
network by layer aggregation was addressed also in terms
of the supra-Laplacian matrix spectrum [128], in which
it was claimed that for many cases the multiple layers
of a multiplex could be reducible without significant loss
of information. This result, however, may originate from
the linear nature inherent to diffusion dynamics that the
supra-Laplacian describes, and its applicability to general
nonlinear dynamical problems is yet to be scrutinized.
Meanwhile, as the Laplacian spectrum is closely related
also with the stability of synchronized state [129,130], it
was used in finding optimal coupling parameter for syn-
chronizability in multiplex, interconnected systems [51].
Several other diffusion-related problems have been stud-
ied in the literature, such as the reaction-diffusion pro-
cesses [131,132]. Readers interested in further details are
referred to a recent review on this subject [133].

Non-diffusive transport such as the ballistic transport
along the shortest paths can be relevant in such problems
as the network routing and congestion control based on
traffic load (or betweenness) [122,134]. A pioneering work
pointing out the relevance of multiple layers in such prob-
lems [135] suggested the framework of what was called
the layered network of the logical layer defined by the
routing table and the physical layer over which the real
transport occurs, and applied it to real traffic time table
data of public transportation system to simulate real traf-
fic patterns [136]. More recently, the multiplex framework
has been applied in a more conceptually straightforward
manner to the study of interconnected transportation
systems [67]. Metropolitan transportation network is mod-
eled as a coupled (interconnected) network of spatially-
embedded layers. Depending on the origin-destination dis-
tribution, the optimal coupling strength may exist, for
which the trade-off between time efficiency and conges-
tion level can yield maximum utility of the system [67].
The navigability of multiplex transportation system upon
random failures was studied [32] under both diffusive and
shortest-path based transport scenarios.

4.3 Epidemic spreading

Epidemic spreading is another classic topic of dynami-
cal processes on networks with its own extensive litera-
ture [137]. It models how the infectious entities, be it a
disease or a fad, spread over the network. The way the in-
fection is transmitted to other nodes over the links defines
a specific model. As the infection proceeds, it is not un-
common that agents (say individuals) in the network can
be exposed to infectious entities (say human pathogens)
through many different channels of interaction (say dif-
ferent social network layers like family or co-workership)
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which can have vastly different spatiotemporal character-
istics. To handle such scenario, the multiplex framework
would not only be more straightforward conceptually but
also more transparent methodologically than the single-
layer counterpart, which in itself should be merely effec-
tive and approximate.

Works on classical susceptible-infected-removed
(SIR) and susceptible-infected-susceptible (SIS) epidemic
spreading models on interconnected networks [138–141]
should be noted as the predecessors of bona fide multiplex
models. These models on interconnected networks could
be studied by direct generalization of the single-layer
methods, similarly to percolation and diffusion problems.

Contagion process over multiplex social network with
multiple channels (layers) of contagion as well as inter-
layer contagion following SIS-type dynamics was formu-
lated by means of the contact-based discrete time Markov
chain [52]. It has shown that the epidemic threshold in
such systems is completely governed by the layer with
the largest maximum eigenvalue of the contact probability
matrix and that simply aggregating different layers into a
single network cannot describe the process accurately [52].
Analogous conclusion was drawn from the studies on sim-
ilar models [142,143].

Often the coupled multiple layers contributing to
spreading process are subject to some level of spatiotem-
poral separation. Consider the online and offline commu-
nication channels for information spreading, for instance.
The concept of layer-crossing overhead (or layer-switching
cost) was introduced as a new dynamic ingredient to ac-
count for this aspect in information spreading process over
multiplex social networks [144]. It implies the difference in
the rates of across-the-layer and along-the-layer infections,
leading to path-dependent transmissibility even for the
same link (Fig. 10a). Studying an SIR-type model with
such path-dependent transmissibility [144], it was found
that the layer-crossing overhead confers nontrivial effects
on spreading dynamics, viz., the epidemic threshold be-
comes dependent on the layer-crossing overhead in non-
monotonic ways (Fig. 10b). Novel analytical method tai-
lored to deal with the path-dependent transmissibility had
also to be developed [144]. In this sense, it can be said that
even the simple contagion model (like classical SIR model)
can turn out not-so-simple on multiplex networks.

Another situation for which multiplex framework is
useful is the case of two or more infectious entities spread-
ing through its own network layer over a multiplex pop-
ulation. Particularly interesting is when the multiple in-
fectious entities interact, either compete or cooperate, for
spreading. The cases of competitive multiplex spreading
were studied more actively, in the context of interplay be-
tween awareness and disease spreading [145–148], inter-
action between two diseases coexisting in a host popula-
tion such as AIDS and tuberculosis [149], and spreading
of competing memes [150], providing the conditions for
coexistence or exclusive outbreak of different diseases in
a population. The coinfection model [151] is worthwhile
to note even though it is studied on single-layer networks,
as it provides a conceptual framework on how the cooper-

Fig. 10. (a) Schematic illustration of the SIR-type model with
layer switching cost on a duplex network. Transmissibility T
for the infection along a link is determined by the types of
both incoming (denoted by second subscript) and outgoing
(first subscript) infection channels (layers). (b) Color-coded
plot of the epidemic threshold λc as a function of the layer den-
sity disparity parameter δz, defined by zA,B = (1 ± δz)z0/2,
and the infection rate disparity parameter δλ, defined by
λintra,inter = (1 ± δλ)λ, on duplex ER networks with z0 = 2.5.
The horizontal dashed line (black) is the boundary above which
the epidemic threshold decreases monotonically with δλ. Green
(blue) line indicates the loci with the lowest (highest) value
of λc for given δz, displaying non-analyticity. Adapted from
reference [144].

atively coupled epidemics (syndemics) could be modeled
in multiplexes. It was found for the coinfection model the
epidemic transitions can occur in a discontinuous manner
together with hysteresis [151], consonant with the find-
ings from mutual percolation and viability problems in
Section 3.

5 Other types of layer coupling

5.1 Competitive coupling, antagonistic layers

Another important type of layer couplings in multiplex
systems is the competitive coupling of antagonistically
interacting layers [152,153]. It can also be regarded a
subtype of cooperative coupling in that the layers are in-
terlocking one another functionally, but we shall treat it
separately to emphasize its unique features.
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The concept of mutual percolation has been twisted
into the percolation of antagonistic layers [152,154] (which
might well have been called the exclusive percolation8). In
this model, for two-layer multiplexes, the percolating clus-
ter of each layer is defined in the following way: a node i
belongs to the percolating cluster of layer A if it has at
least one neighbor in layer A belonging to the percolating
cluster of layer A, but at the same time, has no neighbors
in layer B belonging to the percolating cluster of layer B
(vice versa for layer B). The equations for the size of per-
colating clusters in each layer Sa can be set up by following
similar logic as equations (8) and (9), as follows. First, the
probability wa that the node reached by a randomly cho-
sen a-layer link does not belong to the percolating cluster
of layer a satisfy the coupled self-consistency equations,

1 − wa =
∑
k

kaP (k)
za

(
1 − wka−1

a

)
wkb

b

=
[
1 − G

(a)
1 (wa)

]
G

(b)
0 (wb), (29)

for distinct a, b ∈ {1, 2}, and the last equality holds when
P (k) factorizes (that is, the degrees of a node in differ-
ent layers are uncorrelated). G

(a)
0 (x) and G

(a)
1 (x) are the

generating functions defined as in equations (21) and (22)
but for each layer a. Sizes of percolating clusters Sa are
given by [152]

Sa =
∑
k

P (k)
(
1 − wka

a

)
wkb

b

=
[
1 − G

(a)
0 (wa)

]
G

(b)
0 (wb), (30)

with the same convention as equation (29). Solving equa-
tions (29) and (30) for a number of different layer topology,
a rich phase diagram was obtained. Notably the bistable
phase accompanying discontinuity and hysteresis in sta-
ble solutions was found, which occurs when the densi-
ties of both layers become sufficiently large [152] and
sustains even with only a small fraction of antagonis-
tic nodes [154]. These results might be compared with
those found in epidemic spreading with competitive lay-
ers [145,146,149,150] for their similarity and differences
(see Sect. 4.3). It is worth to remark that it has not yet
been explicitly demonstrated how the different percolat-
ing clusters corresponding to solutions of equations (29)
and (30) in the bistable phase could materialize from spe-
cific percolation processes, which is related to the question
of the topological and algorithmic definition of the giant
exclusively-connected component and its uniqueness. Fi-
nally, a conceptually-related study on two interconnected
networks competing for spectral dominance [153] is worth
a mention, in which successful interconnection strategy
was investigated for a number of cases of different layer
topology. Overall, compared to the previous two classes,
much little attention has been paid to the competitively
coupled layer problems thus far, remaining a fertile ground
for future works.

8 Not to be confused with the explosive percolation [155].

5.2 Directional coupling, hierarchical layers

Layers in a multiplex system can also have directional or
hierarchical, rather than bidirectional or mutual, influence
from one layer to another. Although this type of coupling
has yet received little attention in the multiplex network
literature, there is another active research field, the tempo-
ral network, in which the concept of directionally coupled
layers is imposed naturally by the causality constraint due
to time ordering. It is therefore expected that theoretical
framework and understanding therefrom can be applicable
to this type of multiplex problems [4]. The temporal net-
work is itself an active branch of contemporary network
theory, with growing body of literature. Readers interested
in more details are referred to the recent comprehensive
review and compendium on the subject [21,22].

6 Conclusion and outlook

In this Colloquium paper, we have presented an overview
of recent development in multiplex networks from the
viewpoint of statistical physics. In doing so, we have put
consistent emphasis on the importance of bringing the
proper context of multiplexity into the problem and its
solution. Examples of multiplex systems and multiplex
structural measures are introduced broadly yet concisely.
Various statistical physics problems on the structure and
dynamics of multiplex networks are categorized by the
functional context of layer coupling. Two major cate-
gories, the problems with cooperative layers and those
with complementary layers, are discussed in detail and
highlighted for their distinction.

No review papers can be completely exhaustive, and
this paper is no exception. In a due manner, we have
chosen deliberately to do a highly focused review cen-
tered on the strict definition of multiplex networks and
the problems thereon. Closely-related variety of multilay-
ered networks are drawn into in-depth discussion only
when it is largely indispensable. Most of concepts and
methodology can readily be applicable to related mul-
tilayered networks with minimal customization. Readers
are referred to [1–3] to fill the possible gap, however. We
have also limited the discussion for the most part on mul-
tiplex random networks for the sake of simplicity. Mul-
tiplexes of more heterogeneous layers such as scale-free
networks could furnish a far richer repertoire of new be-
haviors due to the interplay between the structural sin-
gularity and multiplexity [15,78,156], a fertile ground for
further study. Last but not least, several other dynami-
cal processes have also been studied in multiplex frame-
work, detailed discussion of which was regretfully omit-
ted in this paper. Notable examples include the Boolean
dynamics on multilevel networks [157], synchronization in
interconnected networks [158–161], evolutionary game dy-
namics [162,163], and opinion dynamics on multiplex co-
evolutionary networks [164].

Despite some skepticism over the multiplex framework
in favor of simpler and more-established single-layer one,
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the compelling viewpoint of this paper is that the multi-
plex framework is not only useful but crucial in elevating
the level of our understanding of complex systems. Novel
phenomena unforeseen in traditional single-layer frame-
work can arise as a consequence of the coupling of network
layers, especially when the layers are coupled in cooper-
ative or competitive manner, in which cases the multi-
plex is not reducible into an equivalent single-layer sys-
tem. It only remains to be seen what other new physics
can emerge in this framework. In this prospect, use-
ful lessons might be learned also from the vast litera-
ture on emergent phenomena in coupled statistical me-
chanical models [165–167], as well as in layered physical
systems such as layered cuprates in high-Tc superconduc-
tors [168], layered materials in multiferroics [169], and lay-
ered graphenes [170].

We would like to close this Colloquium paper with an
idiosyncratic list of a few research questions warranting
immediate attention. (i) Proper context-dependent defini-
tion and analysis of network measures such as the shortest
path and betweenness centrality need to be established;
(ii) there still remain major network concepts anticipat-
ing to be applied and generalized to multiplexes. A prime
example is the controllability [171–174]; (iii) no under-
standing in statistical physics is complete without system-
atic cataloguing and classification of possible universality
and associated critical phenomena. Compared to single-
network counterpart [175], the current level of our un-
derstanding is far from satisfactory. Identification of the
minimal couplings (in the renormalization group sense)
relevant to the characteristic discontinuous transitions in
multiplex systems would be a seminal stepping stone in
this regard.

We thank Alex Arenas for his courtesy for Figure 9b. We would
also like to thank Charles D. Brummitt, Won-kuk Cho, Jung
Yeol Kim, and Sangchul Lee for productive collaboration on
this exciting research topic. Special thanks goes to Jung Yeol
Kim also for his help in collecting references. This work was
supported by the Basic Science Research Program through an
NRF grant funded by MSIP (Grant No. 2011-0014191).
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162. J. Gómez-Gardeñes, I. Reinares, A. Arenas, L.M. Floŕıa,
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